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Introduction (1) 
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Source: Golloch, 2005  
Downsizing bei Verbrennungsmotorren 

Source: Audi AG 1.8 TFSI Engine 

!  Rising power density 
!  Locally varying loads 

!  Conservation of resources 
!  Energy efficiency 

!  Integrate different materials into one 
single hybrid component 

!  Take advantage of specific characteristics 
of different materials 

Motivation Current Trends 
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Introduction (2) 

Appropriate Material at the Appropriate Location 
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Automative Engineering Aerospace Engineering 
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Automative Engineering Medical Engineering 

!  Extended functionality of components 

!  Lightweight construction 
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Research Overview (1) 

!  Laser welding 
!  Friction welding 
!  Profile extrusion 

Forming Finishing Joining High-performance components 
with locally-adapted properties 

!  Die forging 
!  Impact extrusion 
!  Cross wedge rolling 

Use of combined semi-finished workpieces and thermo-mechanical manufacturing processes  
to produce hybrid components with locally-adapted properties 

!  Machining 
!  Heat treatment 
!  Finishing 

Collaborative Research Centre “SFB 1153” 

!  Service life evaluation 
!  Geometrical inspection 
!  Damage prediction 
!  Multiscale modelling 
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Research Overview (2) 

Stepped Shaft 1 
Coaxial Arrangement 

of Materials 

Bearing Bushing Bevel Gear 

Bi-Material Automotive Parts of SFB 1153  

Stepped Shaft 2 
Sequential Arrangement 

of Materials 
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Research Overview (3) 

www.sfb1153.uni-hannover.de 

Bi-Material Automotive Parts of SFB 1153  

Stepped Shaft 1 
Coaxial Arrangement 

of Materials 

Bearing Bushing Bevel Gear Stepped Shaft 2 
Sequential Arrangement 

of Materials 
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Material and Method (1) 

Geometry Description 
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Ø40 mm 

Stepped Shaft 
Geometry 

Friction Welded 
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Material and Method (2) 

6082  

20MnCr5 

!  Combination of a wrought aluminum alloy (6082) and a case hardening steel (20MnCr5) 
!  Counter force application by two gas springs to control stress-state by the joining zone 
!  Inhomogeneous temperature distribution in the bi-material billet by induction heating 

Bi-Material Billet Preform of the 
Stepped Shaft 

Tooling for the Impact Extrusion 
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Material and Method (3) 

Thermal Processing Prior to Forming 

Motivation 
Quality of the joining decisive in the final product quality 
Faulty microstructure at the joining zone as a result of the preceding welding process 
Treatment of joining zone properties possible by deformation processing at elevated 
temperatures 
 
 

Challenges 
Vast difference of flow behaviors of aluminum and steel at a given temperature 
Homogeneous temperature distribution leads to insufficient plastic straining at the joining zone 
Aluminum melts away ca. above 550 °C 
 
 

Solution approach 
Tailored temperature distribution using induction heating 
Analysis of materials‘ responses to deformation 
Choosing individual target forming temperatures 
A sharp gradient necessary by the joining zone 
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Material and Method (4) 

Flow Curves for Aluminum and Steel 
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!  800-900 °C in steel matches to 20 C in aluminum 
!  Target is a step function of temperature 
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Material and Method (5) 

6082 
Aluminum Alloy 

Joining Line 

20MnCr5 
Steel 

Ceramic Spacer 

Copper Shunt 

Thermal Process Design 

Due to project budget, it was necessary to utilize 
an induction coil that was designed for another 
process, hence the copper shunt was introduced 
to control the electromagnetic end effect. 
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Heating Time, s 
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On the Surface 

!  Relatively good agreement for the results 
!  Further refinement could be made with better material property description 

Comparison Between Models and Experiments 
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Results (2) 

Induction Heating Simulation 
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Temperature Distributions 
in the Bi-Material Workpiece 
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Results (3) 

Process Video 
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Results (4) 

Extrusion Simulations and Experiments 

!  Successful Prediction of Joining Line Geometry 
!  Transfer of Temperature History to Forming Simulation (Flux 2D " Marc Mentat) 

Joining  
Line 
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Results (5) 

Development of the Joining Lines 

Steel-Aluminum 
with the applied  
heating strategy 

41Cr4 

C22 

20MnCr5 

6082 

Steel-Steel 
formed at 700 °C 

Steel-Steel 
formed at 900 °C 
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Results (6) 

Metallography 

Steel in focus Joining line in focus Aluminum in focus 

!  Focusing problem due to different responses to grinding/polishing 
!  2% Nital for etching steel and 0.5% Hydrofluoric for aluminum 
!  No distinct intermetallic phase observed at the joining interface 
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Results (7) 

Metallography 
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Outlook (1) 

Semi-Submerged Induction Heating 
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Outlook (2) 

Semi-Submerged Induction Heating 

Temperature Profiles Transfer after Induction Heating 
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Thank you for your attention! 

The presented results were obtained within the Collaborative Research Centre 1153 ‘‘Process chains to 
produce hybrid high performance components by Tailored Forming’’. The speaker would like to thank 
German Research Foundation (DFG) for the financial and organisational support of this project. 

www.sfb1153.uni-hannover.de 

Contact us! 

Robert C. Goldstein 
rcgoldstein@fluxtrol.com 

Dave Guisbert 

daguisbert@aol.com 

Deniz Duran 
duran@ifum.uni-hannover.de 


