Dilatometer Measurements During
High Speed Heat Treatment

Measurement Errors from
Temperature Gradients
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Dilatometer Arrangement

e Specimen 4 mm dia by 10 mm
long

* Heating by outer induction coil

* Cooling by Gas Jets from inner
coil

* Temperature measured by Single
Thermocouple welded to surface
at center

* Length change measured by LVDT




Dilatometry Test
During Heating at
50 °C/s

R. Cryderman and T Ballard, “Short Time
Austenitizing Effects on the
Hardenability of Some 0.55 wt. pct.
Carbon Steels,”

IFHTSE 2017, Nice, France
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14.25 seconds into heating

Temperature
Gradient During
Heating at 50 °C/s
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Induction heating rates
can be up to 10,000 °C/s

Texperature

R. Goldstein, E. Buchner, and .R

Cryderman, “Modeling of Short Time
Dilatometry Testing of High Carbon 2mm
Steels,” HTS 2017, Columbus, OH De|ta =41 °C
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Modelling of Temperature Gradients

 Selected O1 tool steel quenched to martensite for study

* This alloy avoids transformation on cooling until martensite
transformation

* Tests were conducted at Colorado School of Mines using
thermocouples welded to the surface at mid, quarter, and end points
to provide data for modeling

» Tareq Eddir of Fluxtrol will present a Model of the Influence of
Heating Rate on Temperature Gradient

* Andy Banka of Air Flow Sciences will present a Model of the
Temperature Gradients During Helium Quenching




Influence of Heating Rates on
Temperature Gradients in Short Time
Dilatometry Testing

Tareq Eddir, Robert Goldstein
Fluxtrol Inc.

tieddir@fluxtrol.com
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Outline

e Description of experiments
e Description of modelling
 Comparison methods

e Temperature Results

* Dilatometry Results

* Conclusions

JAN!

25 PROCZSSING




Description of Dilatometry Testing

Manufacturer TA Instruments
Fused silica rods hold the component
Heat source is induction heating

* Advertised heating rate up to 1000°C/s
Heating is done in vacuum
O1 Tool steel was used
Specimen diameter is $4.02x10.12mm
Gas quenching through induction coil used
for cooling

* Quench not presented in this study
Measures dimensional movement during the =
thermal process
Three thermocouples attached to the sample
to monitor the temperature
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Description of the Induction
Modelling i

e Altair’s Flux 2D was used

* Magnetic and thermal coupled physics

* Axisymmetric geometry was used

e Half of the system was modelled due to
symmetry

* Steel material properties were determined in a
previous study”

* Three thermocouples were used to monitor
the temperature, equivalent to the testing I:'m

. -TC2
I O C a tl O n S *Modeling of Short Time Dilatometry Testing of High Carbon Steels
Robert Gol in,

luxtrol, Inc., Detroit, igan,
regoldstein@fluxtrol.com

<-TC1

an Buchner, Robert Cryderman
hool of Mines, Golden, Colorado, USA
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Comparison Method

The samples were heated at different rates then gas quenched
* TC1 was used to control temperature
* TC2 and TC3 collected temperature data for axial gradient
* Dilatometry data was collected
* Quench was not modelled in this study

Heating was modelled by matching the heating rate of the
experimental and model TC1 data

* TC2 and TC3 were compared for validation
Samples were heated to 900°C with a 1s hold

Heating Rates:
* 0.1°C/s
e 1°C/s
 5°C/s
* 50°C/s
e 250°C/s
* 500°C/s
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0.1 °C/s Heating Results

Highest gradients occur around Curie point
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The slow heating rate results in low temperature gradients in the specimen. This can
be treated as an equilibrium case.
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0.5 °C/s Heating Results
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The slow heating rate results in low temperature gradients in the specimen. This can
be treated as an equilibrium case.
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5 °C/s Heating Results
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50 °C/s Heating Results
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Gradients in the 50 °C/s are not insignificant and the specimen is not at uniform

temperature.
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250 °C/s Heating Results
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Gradients are very significant, especially around Curie point.
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500 °C/s Heating Results
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For the 250 °C/s and 500 °C/s heating rates B is >1.2T on the surface of the specimen. At thatodeling of Short Time Dilatometry Testing of High Carbon Steels

range the permeability (u=B/H, slope of the BH Curve) changes more rapidly. This results in an Pt et A
. . regoldstein@fiuxtrol.com
overestimation of the end effects.

Ethan Buchner, Robert Cryderman
Colorado School of Mines, Golden, Colorado, USA

Future tests will look at improving material properties to better model high heating rates.
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Temperature Distribut

TEMPERATURE
760.000 — |

748.824 —
737.647 —
726.471 —
715.294 —
704.118 —
692.941
681.765
670.588
659.412
648.235
637.059
625.882
614.706
603.529
592.353
581.176
570.000

Temperature / Temperature in °C

0.1°C/s 0.5°C/s 5°C/s 50°C/s 250°C/s 500°C/s

TGradient = TMax_TMin 7°C 7°C 13°C 36°C 113°C 173°C

TDif‘ference = TCl-TAvg 3°C 2°C 5°C 17°C 59°C 92°C

The temperature distribution maps were taken at TC=750 °C (Around Curie point). The highest gradients occur
around this point. The gradients for the 50 °C/s, 250 °C/s, and 500 °C/s cannot be considered insignificant.
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Final Temperature

TEMPERATURE
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°c

Temperature / Temperature in

0.1°C/s 0.5°C/s 5°C/s 50°C/s 250°C/s 500°C/s

TGradient = TMax-TMin 7°C 8°C 12°C 22°C 30°C 34°C

TDifference = TCl-TAvg 1°C 1°C 3°C 5°C 9°C 10°C

The temperature distribution maps were taken at end. The radial gradients significantly lower than the axial
gradients. The 50 °C/s, 250 °C/s, and 500 °C/s heating rates show high final gradients.
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Dilatometry Results

Acl and Ac3 shift to higher temperatures for heating rates.
Dashed curve shows the data for the 50°C/s corrected for the
average specimen temperature.

0.1°C/s

—0.5°C/s

5°C/s
———50°C/s (TC1)

———-50°C/s (Tavg)

High gradients in 250 °C/s and 500 °C/s heating rates result in ———500°C/s
non-simultaneous transformation. Simultaneous expansion and

contraction masks Acl and Ac3 in the dilatometry ————250°C/s
measurements.

Specimen Tempering

100 200 300 400 500 600 700 800 900 1000
Temperature [°C]




dL/dT [um/°C]

-1.5

0.1°C/s

Dilatometry Results

0.5°C/s

Temperature [°C]

5°C/s

50 °C/s (TC1)

— — —-50°C/s (Tavg)

Changes in slope of length versus temperature plot more
clearly delineate transformation beginning and end.

Heating Rate Measured Corrected
[°C/s] Acl [°C] | Ac3 [°C] | Ac1 [°C] | Ac3 [°C]
0.1 734 760 734 760
0.5 734 766 734 766
5 746 779 746 778
50 762 800 757 794
250 N/A N/A N/A N/A
500 N/A N/A N/A N/A

Temperature gradients at high heating rates give
erroneously high transformation temperatures.

22




Conclusions

 Computer models were created to predict temperature
distribution during dilatometer testing
* Low temperature gradients can be assumed for slow heating rates

* High heating rates have high temperature gradients, especially
around beginning of transformation

e Surface welded TC measurements don’t adequately describe the
specimen temperature at high heating rates

e Transformation temperatures shift with heating rates
* Quasi-Equilibrium data from slow heating rates are not appropriate
for rapid heating application
 More work needs to be done to better characterize
transformation at high heating rates
e Specimen geometry change can be made to reduce gradients

 More work needs to be done to develop accurate databases for
rapid heating transformation data
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Questions?
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