

Investigating the Benefit of Soft Magnetic Composite Inserts on Energy Efficiency in Cold Wall Billet Casters Using Computer Simulation

Tareq Eddir, Fluxtrol Inc. (tieddir@fluxtrol.com) Robert Goldstein, Fluxtrol Inc. Robert Haun, Anspanner LLC 03/09/2021

Outline

- Cold Wall Induction Billet Caters background
- Geometry Description
- Simulation Description
- Electrical Parameter Results
- Current Density Results
- Conclusions

Background

- Titanium powder production has increased substantially for additive manufacturing and the aerospace industry
- Powder is manufactured via techniques such as EIGA, which results in a relatively non-uniform powder size
- Additive manufacturing of titanium parts requires uniform powder sizes, resulting in low yields of acceptable powder sizes
- Rejected powder is recycled through cold wall billet casters
 - The cold wall design results in low electrical efficiency
- Soft magnetic composites have shown to increase efficiency of cold crucibles and may help reduce power demand in billet casters as well

Power Deposition

Pull Direction

FLUXTROL[®]

Geometry Description

Powder Titanium is deposited from the top onto a billet being slowly pulled. The molten top of the billet (dashed circle) is heated through an induction heating coil.

> The black arrows indicate current direction in the coil, caster fingers, and load. The fingers are individually water-cooled to extract heat from the Joule losses and heat from transferred from the load.

Simulation Description

Flux 3D FEM software was used for the simulation.

- 3D geometry was used
- Electromagnetic physics was used
 - $1000A_{RMS}$ at 5 kHz was used for all simulations
- Load resistivity of $1.7\mu\Omega m$ was used
- Fluxtrol 100 soft magnetic composite was used for the magnetic inserts, rings, and shunts
- 1/24th of the geometry was modelled using symmetry planes

Electrical Results

Case	U	P _{Load}	P _{Coil}	P _{Mold}	P _{SMC}	η
Bare	7.9	368	280	612	0	29.2%
Inserts	9.1	634	268	647	4	40.8%
Rings and Inserts	9.8	714	279	733	7.7	41.2%
Rings and Shunts	9.4	435	316	771	29	28.0%
Rings, Shunts, and Inserts	11.1	824	328	872	47	39.8%

Where: η is efficiency U is potential in V and P is power in W SMC is Soft Magnetic Composite (Rings, Inserts, and Shunts)

UIE Congress 2021 – Pilsen, Czech Republic

FLUXTROL

Load Current Density Contour

FLUXTROL

Mold Current Density Contour

FLUXTROL

Normalized Current Density Graphs

UIE Congress 2021 – Pilsen, Czech Republic

FLUXTROL[®]

Conclusions

- 3D Simulations were made to predict the electrical parameters of different cases
- The results show using soft magnetic composites for cold wall billet casters increases the electrical efficiency
 - Adding rings and shuts on the coil showed no benefit on the efficiency
 - When considering chamber heating and size, rings and shunts can be beneficial
 - Addition of inserts to the billet caster increases efficiency by ~10%
- An existing mold design was considered, further improvements may be achieved with an optimized design

